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Abstract

We derive the dominant contribution to the large-distance decay laws of
correlation functions towards their asymptotic limits for a spin chain model that
exhibits both Haldane and Néel phases in its ground-state phase diagram. The
analytic results are obtained by means of an approximate mapping between
a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting
Bogoliubov quasiparticles related in turn (via Jordan–Wigner transformation)
to the XY spin-1/2 chain in a transverse field. This approach allows us to
express the spin-1 string operators in terms of fermionic operators so that
the dominant contribution to the string correlators at large distances can be
computed using the technique of Toeplitz determinants. As expected, we find
long-range string order both in the longitudinal and in the transverse channel
in the Haldane phase, while in the Néel phase only the longitudinal order
survives. In this way, the long-range string order can be explicitly related
to the components of the magnetization of the XY model. Moreover, apart
from the critical line, where the decay is algebraic, we find that in the gapped
phases the decay is governed by an exponential tail multiplied by power-law
factors. As regards the usual two points correlation functions, we show that the
longitudinal one behaves in a ‘dual’ fashion with respect to the transverse string
correlator, namely both the asymptotic values and the decay laws exchange
when the transition line is crossed. For the transverse spin–spin correlator,
we always find a finite characteristic length which is an unexpected feature
at the critical point. The results of this analysis prove some conjectures put
forward in the past. We also comment briefly on the entanglement features of
the original system versus those of the effective model. The goodness of the
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approximation and the analytical predictions are checked versus density-matrix
renormalization group calculations.

PACS numbers: 75.10.Pq, 03.65.Vf

1. Introduction

The Haldane phase [1], found in many low-dimensional spin systems, has attracted a great
amount of attention in the last two decades both from the theoretical and from the experimental
points of view. Its genuine quantum nature is signalled by two characteristic features. First, the
excitation spectrum above the ground state (GS) displays a finite energy gap and, second, one
can identify suitable long-ranged string correlation functions that measure a hidden topological
order of the phase. The most intuitive idea to understand the physical features of the Haldane
phase is probably the spin liquid picture [2]: in a spin-1 chain with Heisenberg interactions
and the quantization axis directed along z, let us assign the presence of an effective spin-1/2
particle with spin pointing up (down) if at the ith lattice site Sz

i = +1 (−1) and no particles
if Sz

i = 0. The Haldane phase is then interpreted as a liquid in which these effective particles
carry no positional order along the chain but still retain antiferromagnetic (AFM) order in their
effective spins. The positional disorder is associated with the absence of long-range order in
the usual spin-1 correlation functions

Cα(R) ≡ (−1)R
〈
Sα

i Sα
i+R

〉
, α = x, y, z

whereas the spin-1/2 magnetic order that we would get if all the sites with Sz
i = 0 were taken

off from the chain is measured by the asymptotic value of the string correlators [3]

Oα(R) ≡ 〈
Sα

i eiπ
∑i+R−1

j=i+1 Sα
j Sα

i+R

〉
, α = x, y, z, (1)

for R → ∞. Interestingly enough, the Haldane gap has been interpreted as the excitation
energy associated with a ‘spinon’ (or kink) with respect to the hidden order [4]. The
nonvanishing values of the string-order parameters (SOP)

Oα ≡ lim
R→∞

Oα(R)

can be understood as a spontaneous breaking of hidden (nonlocal) Z2 symmetries of the λ−D

Hamiltonian, as discussed thoroughly by Kennedy and Tasaki [1]. From a numerical inspection
of the string correlation functions (1) computed on the first excited state with Sz

tot = 1, rather
than on the GS, Elstner and Mikeska [4] argued that this excited wavefunction is characterized
by a transition region with vanishing string correlations that connects two asymptotic limits
with symmetry breaking and different values of the hidden order. In a field-theoretic approach
to spin-1/2 Heisenberg chain [5] such a kink is described as an effective particle—a soliton—
moving with relativistic dispersion relation. When the system is moved away from criticality,
due to the action of a relevant field, the soliton acquires a nonvanishing mass or an energy gap,
in the condensed matter language. In [6] some of the authors have proposed a picture of the
states that form the Haldane triplet at the isotropic point in terms of massive solitons and their
bound states arising in the sine-Gordon formulation, valid in the neighbourhood of the critical
line that marks the limit of the Haldane phase towards the large-D one (see below). The first
solid numerical evidence of a nonzero Haldane gap has been provided by White and Huse [7]
using the by now celebrated density-matrix renormalization group (DMRG) method.

Actually, the Haldane phase is not restricted to spin-1 systems and can be found, for
example, in spin-S Heisenberg chains for every integer value of S. According to [8] the gap
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Figure 1. Ground-state phase diagram for the model (2) in the AFM region λ � 0. The three
phases are defined in the text.

vanishes as the classical limit S → ∞ is approached as � ∝ S−1 exp(−πS) while the
behaviour of the string order is more subtle: in order to have a nonzero value one has to
generalize the string correlation function of equation (1) using not π in the exponential but
S-dependent optimal angles θn = (2n+1)π/S with n = 0, 1, . . . , S−1. Again, when S → ∞
the resulting values of Oα(θn) tend to zero.

It is interesting to examine also how the features of the Haldane phase are destroyed
by varying the parameters of the Hamiltonian out of the isotropic spin-S Heisenberg model
(S integer). In this paper we shall stick from now on to the case S = 1 and consider two
types of anisotropies along z: Ising-like interactions (parametrized by λ) and single-ion terms
(parametrized by D)

H =
∑

i

�Si · �Si+1 + (λ − 1)Sz
i S

z
i+1 + D

(
Sz

i

)2
. (2)

The phase diagram of this model has been investigated in various papers with different
approaches [1, 3, 9]. In order to fix the ideas we will refer to our recent determination [6],
reported (in a simplified form) in figure 1. Fixing a nonnegative value for λ and varying
D we encounter three gapped phases: the large-D one in which Oα = 0 ∀α indicating the
absence of magnetic order in the effective spin-1/2 particles. Their positional degrees of
freedom are also disordered. In the Haldane phase the spatial disorder persists but magnetic
order emerges. As a consequence both longitudinal and transverse string order parameters
(SOP) become nonzero: Oα �= 0. As pointed out in [10] on the basis of an exact solution
for an integrable variant of (2) with λ = 0 and in-plane anisotropy, the excitation gaps in the
large-D and in the Haldane phases have a rather different nature. Despite the fact that they
are both found within the sector Sz

tot = 1, the former corresponds to a flip of a single spin
out of the xy plane while the latter is related to the breaking of a two-site singlet composing
the resonant-valence-bond GS similar to that of the spin-1 chain exactly solved by Affleck,
Kennedy, Lieb and Tasaki [11]. Finally, by decreasing further the value of D, we pass in the
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Table 1. Decay laws of string correlation functions defined in the text, according to section IIE
of [3]. To be compared with the results of this paper, including the explicit form of the algebraic
prefactors, as reported in table 3.

Phase Oz(R) GH (R)

Haldane Expon. to �= 0 Expon. to 0
Néel Expon. to �= 0 Expon. to �= 0

Néel phase where both positional and magnetic degrees of freedom orders are signalled by a
nonvanishing (spontaneous) magnetization along z :

M2
z ≡ lim

R→∞
Cz(R).

At the same time Oz �= 0 but Ox,y = 0. Den Nijs and Rommelse ([3], section IIE) introduced
yet another less-familiar string correlation function without spins at the ends

GH (R) ≡ 〈
eiπ

∑i+R
j=i Sz

j

〉
and argued that GH(∞) = 0 in the Haldane phase but GH (∞) �= 0 in the large-D and Néel
ones.

Hence we may select, equivalently, the pairs (Oz,Ox) or (Oz,Mz) as order parameters to
classify the three types of behaviour. The universality classes associated with the two transition
lines will be frequently denoted using the language of conformal field theory (CFT—see, for
instance, [6, 9, 12]), in particular by specifying the central charge c. We interpret the fully-
disordered large-D phase with (Oz = 0,Ox = 0) and (Oz = 0,Mz = 0) as a spin gas. By
crossing the c = 1 line we enter the Haldane phase where the effective spin-1/2 experience a
first magnetic ordering: (Oz �= 0,Ox �= 0) and (Oz �= 0,Mz = 0). Then, loosely speaking, at
the c = 1/2 line the spin liquid crystallizes and the fully-ordered Néel phase can be interpreted
as a spin solid with (Oz �= 0,Ox = 0) and (Oz �= 0,Mz �= 0). Note the interchanged role of
Ox and Mz (see below). In the Néel and Haldane phases GH(∞) refers to the positional order
of nonzero spins [3], so that it vanishes in the Haldane phase but GH (∞) �= 0 in the Néel one.

In order to determine the SOP numerically one has to extrapolate to the thermodynamic
limit and to infinite distance the data computed on necessarily finite samples. However, apart
from the qualitative statements made in [3] about the exponential decay of the string correlation
functions (as reported in table 1), the available literature contains scarce information about
the spatial behaviour of such correlators and the extrapolation may become problematic,
especially close to the transition lines where the bulk correlation length becomes very large.
In a particular case, namely the transition from the large-D to the Haldane phase, the low-
energy physics is described by a compactified free boson field theory (c = 1 CFT). Once the
compactification radius is known in some other independent way, one can read off the decay
exponent of the string correlation functions from the set of scaling dimensions of the possible
vertex operators. Interestingly, it turns out [13, 14] that, even if the lattice model has periodic
boundary conditions (PBC), the vertex operators to be associated with string correlators belong
to the sector with antiperiodic boundary conditions.

The main purpose of this paper, instead, is to address the spatial behaviour of spin–spin
and string correlation functions in the Haldane and Néel phases, making use of a solvable
theory of spinless fermions. Starting from well inside the Néel phase, where the density of
sites with Sz

i = 0 is negligible, we approximate the problem by assuming that the hidden
magnetic order is frozen so that a given contribution to the GS wavefunction can be described
by occupation numbers: no fermions if Sz

i = 0 and one fermion when
∣∣Sz

i

∣∣ = 1, no matter the
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orientation, which is dictated by the underlying string order. The details of this approach will
be presented in section 2; actually it is very close to what is done by Gómez-Santos in [15].
The difference here is that we include also the single-ion anisotropy term and, in fact, the two
formulations are related by a particle-hole transformation. The novelty is that we work out
in detail the mapping of the spin–spin and string correlation functions (subsection 2.1) onto
fermionic correlators, so that we can derive in section 3 the precise form of their asymptotic
behaviour at large distances by exploiting the machinery of Toeplitz determinants. Section 4
reports a comparison with DMRG simulations of the system in equation (2) while section 5 is
devoted to conclusions.

2. Mapping onto spinless fermions

The basic idea underlying the approximation used in this work is the spin-solid picture of the
Néel state(s)

|N〉 = |↑↓↑ · · · ↓↑↓ · · · ↑↓〉 (3)

which is, in fact, the GS of the Hamiltonian (2) for λ → ∞ at fixed D or D → −∞ and
λ > 0. Actually the GS is doubly degenerate: for a given configuration of the type (3) with,
say, Sz

i = 1 at the reference site i = 0, the energy is unchanged by the Z2 transformation
T = exp

(
iπ

∑
j S

y

j

)
that performs a π -rotation about the y-axis (spin-flip). We will refer

to |N〉 and |N̄〉 = T |N〉 as Néel and anti-Néel states, respectively. Now, in a perturbative
fashion, when |D| and/or λ � 1 the effect of the transverse terms in the Hamiltonian S

x,y

i S
x,y

i+1
is to

(i) create pairs of adjacent sites with Sz
i = Sz

i+1 = 0 : |↑↓〉 → |00〉;
(ii) move the zeroes in the AFM background, e.g.: |↑ 0〉 → |0 ↑〉;

(iii) re-create a pair ↑↓ or ↓↑ in place of a pair of adjacent zeroes.

Note that (ii) preserves the AFM order, albeit not on nearest neighbours but mediated by
string of zeroes (hidden order). Again, due to the AFM order (induced by λ > 0 and by the
transverse terms), even if both states of (iii) can be created in an ‘island’ of zeroes, as far
as the low-energy part of the spectrum is concerned, one of the two will be preferred according
to the orientation of the surrounding spins, that is, by the hidden AFM order. Note also
that |N〉 and |N̄〉 are connected through a large number of virtual processes, so that in the
thermodynamic limit only one of the two will be selected by a spontaneous symmetry breaking
mechanism induced by an infinitesimal staggered magnetic field. Alternatively, if the system
under consideration is described by a thermal density matrix exp(−βH), when β → ∞ the
GS reduces to a symmetric mixed state |N〉〈N | + |N̄〉〈N̄ |.

Once the question of the GS is accounted for, from the scenario above, one can see that
the orientation of spins with nonzero component along z is determined by the hidden order
and can be taken for granted. The validity of such an approximation is ultimately measured
by the values of the longitudinal SOP: the closer is Oz to unity the higher is the AFM order of
nonzero spins. We then introduce the following fermionic picture: assign a spinless fermion
|+i〉 ≡ c

†
i |−i〉 at site i if Sz

i �= 0 and no fermions |−i〉 ≡ |0i〉 in the spin language if Sz
i = 0.

(This notation for spinless fermions has a direct translation in the language of the XY model
that will be introduced at the end of this section.) Process (ii) is nothing but a hopping of
spinless fermions, while processes (i) and (iii) represent annihilation and creation of pairs
| +i +i+1〉. The density of nonzero spins (Sz

i )
2 is simply translated to the local fermion number

ni = c
†
i ci , while, due to the underlying AFM order, the Ising-like term takes the form −λnini+1

that contributes with a negative energy when two fermions are present on adjacent sites.

5
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Hence, under the hypothesis of hidden AFM order, the dynamics of equation (2) is
reproduced by the following effective fermionic model:

Hf =
∑

j

(
c
†
j cj+1 + c

†
j+1cj + c

†
j c

†
j+1 + cj+1cj − λnjnj+1 + Dnj

)
(4)

(acting in a reduced Hilbert space H = ⊗iH(2)
i where H(2) denotes the local Hilbert space of

a two-level system—as that of a spinless fermion or a spin-1/2 introduced below). It should
be observed that equation (4) with D = 0 is essentially equivalent (apart from an additive
constant) to equation (2) of [15] once a particle-hole transformation ni → 1 −ni is performed
at every site.

Following Gómez-Santos [15] we now proceed to a further approximation on the fermionic
Hamiltonian that is not amenable to an exact treatment due to the λ-term. At the Hartree–Fock
level this term can be approximated as

njnj+1 � (nj + nj+1)〈nj 〉 − (
c
†
j cj+1

〈
c
†
j+1cj

〉
+ h.c.

)
+
(
c
†
j c

†
j+1〈cj+1cj 〉 + h.c.

)
− (〈nj 〉2 − 〈

c
†
j+1cj

〉〈
c
†
j cj+1

〉
+ 〈cj+1cj 〉

〈
c
†
j c

†
j+1

〉)
where the expectation values 〈· · ·〉 now are taken with respect to the GS of the quadratic
Hamiltonian

HHF =
∑

j

[
(1 + λA)c

†
j cj+1 +

(
1 − λB)c

†
j c

†
j+1 + h.c.

)]
+ (D − 2λn0) nj + λ

(
n2

0 − |A|2 + |B|2) (5)

where the parameters

n0 ≡ 〈nj 〉, A ≡ 〈
c
†
j+1cj

〉
, B = 〈cj+1cj 〉

have to be determined self-consistently. The advantage of a Hamiltonian of the form (5) is
that it can be diagonalized by means of a Bogoliubov transformation

ηk = cos
θk

2
ck + i sin

θk

2
c
†
−k

where ck = 1/
√

L
∑

j cj exp(−ijk) and θk is given by

eiθk = (cos k − h + iγ sin k)


k

where

h ≡ 2λn0 − D

2(1 + λA)
, γ ≡ 1 − λB

1 + λA
(6)


k =
√

(cos k − h)2 + γ 2 sin k2.

Note that, as we are interested in the thermodynamic limit, we do not specify here the
boundary conditions on the spin and fermionic Hamiltonians. The momenta are quantized as
�k = 2π/L and their precise location within the first Brillouin zone depends on the conditions
imposed on the end sites. However, for L → ∞

1

L

∑
k

→ 1

2π

∫ 2π

0
dk.

Apart from additive terms of O(L−1) the Hamiltonian in diagonal form is

HHF = 2(1 + λA)
∑

k


k

(
η
†
kηk − 1

2

)
+ U

6
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Table 2. Self-consistent estimates of the three decoupling parameters n0, A and B of equations
(7)–(9) for some choices of λ and D in the Haldane and Néel phases. It must be kept in mind
that the continuum versions of the self-consistent equations neglect some O(L−1) terms coming
from isolated contributions at wavenumber 0 or π . Last two column contain the corresponding
parameters h and γ of the effective XY model according to equation (6).

λ D n0 A B h γ

1 0 0.709 −0.158 −0.253 0.842 1.49
1 −0.125 0.745 −0.137 −0.246 0.936 1.44
1 −0.200 0.774 −0.117 −0.240 0.990 1.41
1 −0.250 0.800 −0.0979 −0.235 1.03 1.37
1 −0.300 0.816 −0.0866 −0.231 1.06 1.35
1 −0.315 0.820 −0.0837 −0.230 1.07 1.34
1 −0.330 0.824 −0.0811 −0.229 1.08 1.34
1 −0.345 0.828 −0.0786 −0.228 1.09 1.33
1 −0.400 0.841 −0.0706 −0.223 1.12 1.32
1 −0.450 0.850 −0.0645 −0.219 1.15 1.30
1 −0.750 0.893 −0.0406 −0.198 1.32 1.25
1 −0.875 0.904 −0.0344 −0.190 1.39 1.23
1 −10 0.996 −0.000317 −0.0433 6.00 1.04
5 −0.125 0.991 −0.000853 −0.0649 5.04 1.33

and U = (D − 2λn0)/2 + λ
(
n2

0 − A2 + B2
)
. In the thermodynamic limit, the self-consistent

equations are

n0 = 1

2
− 1

2π

∫ π

0
dk

−h(n0, A) + cos k


(k)
(7)

A = − 1

2π

∫ π

0
dk

(−h(n0, A) + cos k) cos k


(k)
(8)

B = − 1

2π

∫ π

0
dk

γ (A,B) sin2 k


(k)
. (9)

The notation used in equation (6) is that commonly used for the XY spin-1/2 model in a
transverse field. In fact, by (inverse) Jordan–Wigner transform one gets [12]

HHF → HXY =
∑

j

(
1 + γ

2

)
σx

j σ x
j+1 +

(
1 − γ

2

)
σ

y

j σ
y

j+1 − hσ z
j (10)

where σα
j ’s are Pauli matrices at site j . This model is known to be critical at h = ±1 for γ �= 0,

where it belongs to the c = 1/2 universality class (the same as the 2D classical Ising model)
and at γ = 0 for h ∈ (−1, 1) where the universality class becomes that of the compactified
free boson, c = 1.

From the numerical solutions of (7)–(9) it turns out that in the Haldane and Néel phases
A < 0 and B < 0 so that γ > 1 (as long as λ|A| < 1 —some representative cases are listed in
table 2), while most studies are limited to |γ | < 1. As a consequence the region γ 2 < 1 − h2

corresponding to oscillations with wavenumber different from π [12, 16] is not present in our
case. However, having γ > 1 does not affect the critical condition we are interested in, that
remains h = ±1. In these cases we have just c = 1/2, as reported before [9] for the Haldane–
Néel transition. At λ = 0,D ∼= − 2 this transition line merges with the boundary towards the
so-called XY phases corresponding to c = 1. Interestingly this change of universality class
is captured also by our approximation since for λ = 0,D = −2 the self-consistent solution

7
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yields just γ = 1 and h = 1. From the data in table 2 one can also estimate, for example, the
critical value of D at fixed λ = 1; the result is Dc

∼= − 0.214, which is not in good quantitative
agreement with the numerical value Dc = −0.315 [9, 14]. The perturbation of the isotropic
Heisenberg Hamiltonian with λ > 1 and D = 0, instead, seems to be better described by the
spinless fermions approach; already at this level of approximation the value λc = 1.125 found
in [15] is close to our best DMRG independent estimate λc = 1.1856 [17]. Even if it is likely
that the inclusion of configurations with nearest-neighbour parallel spins could improve the
results, as discussed by Gómez-Santos [15], we do not insist along this line here because we
are ultimately interested in the decay laws of correlation functions that are essentially dictated
by the universality classes. In fact, it is important to stress that neither the extension to D �= 0
nor the extension of the model as in equation (8) of [15] modify the universality class of the
transition, that remains of the c = 1/2 (or Ising) type for λ > 0. Although the location of
the critical points and of the prefactors depend on the values of the parameters, the scaling
dimensions of the operators in the continuum field theory (i.e. the decay exponents of the
correlation functions) do not change when we move along the c = 1/2 line. Nonetheless, due
to the lack of an explicit mapping of the spin-1 strings onto the corresponding correlators in the
Ising fermionic field theory, up to now the exponents appearing in the large-distance decay of
string correlation functions were unknown. This is precisely the subject of subsections 3.1 and
3.3. Eventually, we note that alternative pictures of the Haldane gap in fermionic language can
be derived by perturbation theory near the Babujian–Takhtajan integrable biquadratic spin-1
chain [18] or from two-leg ladders with ferromagnetic coupling on the rungs [19].

At this stage it is interesting to compare the entanglement properties of the original spin-1
model (equation (2)) with those of the XY spin-1/2 chain resulting from the mapping. On
the one hand, for the former it has been shown [20] that at the isotropic Heisenberg point
λ = 1,D = 0 there is long-distance spin-1 (qutrit) entanglement in the thermodynamic limit
for two sites arbitrarily far apart. It is reasonable to expect that this entanglement survives in
a neighbourhood of the isotropic point. On the other hand, in [21] it is stated that the qubit
entanglement in the XY model with the transverse field vanishes beyond a distance of order
γ −1. In our case γ > 1 and the degrees of freedom of the qubits represent the presence or
the absence of an effective particle with |Sz

i | = 1. Therefore we are led to speculate that
wherever there is full spin-1 entanglement in the vicinity of the Heisenberg point, this is due
to the spin correlations between the sites with Sz

i �= 0. Recalling the hypothesis of underlying
string order and imagining to eliminate the sites with Sz

i = 0, the qualitative picture of the
long-distance entangled states in the Haldane region if that of a Greenberger–Horne–Zeilinger
state [22] with effective AFM order | . . . ↑↓↑↓ . . .〉 + | . . . ↓↑↓↑ . . .〉.

2.1. Mapping for the spin–spin and string correlators

We shall exploit now the mapping from spin-1 to spinless fermions, based on the existence of
an underlying string order, to translate the various spin-1 correlation functions onto expectation
values of strings of fermionic operators that can be computed exactly when the Hamiltonian
has the form (5). Let us start from the z-component of the spin

Sz
j → njKj → 1 + σ z

j

2
Kj, (11)

where Kj = exp
(
iπ

∑
i<j ni

) = ∏
i<j

(−σ z
i

)
is a Jordan–Wigner tail that accounts for the

correct sign when Sz
j �= 0 assuming, conventionally, that the first nonzero spin is pointing

up. By inserting the expression Sz
j = 1+σ z

j

2

∏
i<j

(−σ z
j

)
into the definition of the longitudinal

8
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spin–spin correlation function and using the properties of Pauli matrices one finds

Cz(R) → 1

4
(−1)R

〈(
1 + σ z

j

)∏
k<j

(−σ z
k

) ∏
k<j+R

(−σ z
k

) (
1 + σ z

j+R

)〉

= 1

4

⎛
⎝〈

j+R∏
k=j

σ z
k

〉
+

〈
j+R∏

k=j+1

σ z
k

〉
+

〈
j+R−1∏
k=j

σ z
k

〉
+

〈
j+R−1∏
k=j+1

σ z
k

〉⎞⎠ . (12)

As far as the transverse correlation functions are concerned, it can be checked by direct
inspection on a generic configuration with perfect string order that the identification

Cx(R) = 1

2

(
S+

j S−
j+R + S−

j S+
j+R

) → σx
j

j+R−1∏
k=j+1

(
1 − σ z

k

2

)
σx

j+R (13)

has the correct action, since the only cases in which the lhs does not break the string order are
those with Sz

k = 0, that is σ z
k = −1, on all sites between j and j + R. The product on the

rhs of (13) is exactly the expression involved in the so-called emptiness formation probability
(see, for example, [23] and references therein).

Let us now study the spin-1 strings. Along the z-direction we have simply

eiπ
∑

k<j Sz
k =

∏
k<j

(
1 − 2

(
Sz

k

)2) →
∏
k<j

(−σ z
k

)
. (14)

Again by using the relation Sz
j = 1+σ z

j

2

∏
i<j

(−σ z
j

)
and plugging the string written above into

equation (1) one gets

Oz(R) →
〈(

1 + σ z
j

2

)∏
k<j

(−σ z
k

) j+R−1∏
k=j+1

(−σ z
k

) ∏
k<j+R

(−σ z
k

) (1 + σ z
j+R

2

)〉
(15)

= −
〈(

1 + σ z
j

2

)(
1 + σ z

j+R

2

)〉
= −1

4

(
1 +

〈
σ z

j

〉
+
〈
σ z

j+R

〉
+
〈
σ z

j σ z
j+R

〉)
. (16)

Note that in the language of the effective XY model, the Néel correlation function (12) involves
a string of Pauli operators whereas the string correlation function (16) involves only one- and
two-points correlators of σ ’s. Thanks to equation (14) we easily obtain also the pure-string
correlation function as

GH (R) → (−1)R+1

〈
i+R∏
j=i

σ z
j

〉
. (17)

From equation (12) we see that, in this approach, GH (R) is nothing but the first term of the
usual spin–spin correlation function Cz(R) apart from the prefactor. Along the x-direction,
instead, we exploit the fact that

eiπSx =
⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠ ,

that is, apart from an overall sign, the operator above performs a swap between Sz
j = 1 and

Sz
j = −1 leaving the Sz

j = 0 component isolated. This swap is important because it can be
checked by direct inspection that, for every possible combination of the spin at sites j and
j + R that respects the hidden AFM order, both with an even or an odd number of nonzero
spins in between, the action of Ox(R) produces only one allowed configuration and some

9
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other forbidden ones. More precisely, using the spin-1/2 operator σx that changes empty sites
into occupied sites and vice versa we can write

Ox(R) → (−1)R−1

〈
σx

j σ x
j+R

〉
2

where the inner spin-1 transverse string contributes with the sign prefactors. Thanks to hidden
order in our reduced Hilbert space, the spin-1/2 configurations generated by σx represent the
allowed spin-1 states and the forbidden ones are automatically filtered out. The coefficient
1/2 comes from the matrix elements of Sx at sites j and j + R. Now, thanks to the fact that
the Hamiltonian (5) is quadratic in the fermionic operators, all the correlation functions can be
evaluated using Wick’s theorem. Following the notation of the seminal paper by Lieb, Schultz
and Mattis [24] we introduce the operators Aj = c

†
j + cj and Bj = c

†
j − cj that allow us to

express the basic two-point correlations as〈
σx

l σ x
m

〉 = 〈BlAl+1Bl+1 · · · Am−1Bm−1Am〉
〈
σ z

l σ z
m

〉 = 〈AlBlAmBm〉
with Qlm ≡ 〈AlAm〉 = δlm and Slm = 〈BlBm〉 = −δlm. If we further assume translational
invariance (i.e. PBC) along the chain we have

〈
σx

l σ x
m

〉 =

∣∣∣∣∣∣∣
G−1 G−2 · · · Gl−m

...
...

Gm−l−2 · · · G−1

∣∣∣∣∣∣∣ (18)

〈
σ z

l σ z
m

〉 = G2
0 − Gm−lGl−m (19)

where G−R ≡ 〈BjAj+R〉 = −〈Aj+RBj 〉. In particular, G0 = 〈(
c
†
j −cj

)(
c
†
j +cj

)〉 = 2〈nj 〉−1 =〈
σ z

j

〉
, independent of j and

〈
σ z

j σ z
j+R

〉 = 〈
σ z

j

〉2 − GRG−R . The R-dependence of Oz(R) and
Ox(R) is given directly by

〈
σ z

j σ z
j+R

〉
and

〈
σx

j σ x
j+R

〉
, respectively. The ordinary correlators

Cx,z(R) require a step more since they involve strings of Pauli operators. For example, each
of the terms in equations (12) and (17) has the form

〈∏
k BkAk

〉
. When R → ∞ all the four

terms in equation (12) tend to coincide so that

Cz(R) � (−1)R+1GH(R) = 〈BjAjBj+1Aj+1 · · · Bj+R−1Aj+R−1Bj+RAj+R〉.
Exploiting Wick’s theorem, Caianiello and Fubini [25] have shown that the expectation value
above can be expressed as a Pfaffian

Pf|S−1 S−2 · · · S−R+1 S−R G0 G−1 · · · G−R+1 G−R

S−1 · · · S−R+2 S−R+1 G1 G0 · · · G−R+2 G−R+1

. . .
...

...
...

...
...

...
...

S−1 S−2 GR−2 GR−3 · · · G−1 G−2

S−1 GR−1 GR−2 · · · G0 G−1

GR GR−1 · · · G1 G0

Q−1 · · · Q−R+1 Q−R

. . .
...

...

Q−1 Q−2

Q−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

10
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Thanks to the fact that Ql �=m = Sl �=m = 0 this Pfaffian reduces to a Toeplitz determinant [26]
and we get

Cz(R) =

∣∣∣∣∣∣∣∣∣∣∣

−G0 −G−1 · · · −G−R+1 −G−R

−G1 −G0 · · · −G−R+2 −G−R+1

...
... · · · ...

...

−GR−1 −GR−2 · · · −G0 −G−1

−GR −GR−1 · · · −G1 −G0

∣∣∣∣∣∣∣∣∣∣∣
. (20)

So, the determinants of the matrices with entries Gj become the central quantities of our
analysis.

The matter is more complicated for the transverse spin–spin correlator essentially because
it eventually involves a Toeplitz determinant generated by a matrix-valued symbol that may
also become singular. According to [27] this case is not yet solved in the theory of Toeplitz
determinants and in [28] it has been suggested to extend directly the procedure valid in the
nonsingular case. Fortunately in our case a workaround is possible: thanks to a suitable
diagonalization, we are able to complete the calculation of the dominant contribution to Cx(R)

in terms of a product of Toeplitz determinants, each one computed using the Fisher–Hartwig
conjecture (see, for instance, appendix A.2 in [23]). The details of this procedure are reported
in the appendix.

3. Asymptotic decay laws

3.1. Longitudinal string correlation Oz(R)

The first object we will compute is the longitudinal string correlator. From equations (16) and
(19) we get

Oz(R) = − 1
4

[(
1 +

〈
σ z

j

〉)2 − GRG−R

]
.

Following Barouch and McCoy [16] (in particular their equation (6.12)) we express GR as
follows:

GR = − 1

2π

∫ 2π

0
dk e−ik(R+1)

[ (
1 − λ−1

1 eik
) (

1 − λ−1
2 eik

)
(
1 − λ−1

1 e−ik
) (

1 − λ−1
2 e−ik

)
]1/2

= − 1

2π

∫ 2π

0
dk e−ikRc(eik) (21)

with

λ1,2 = h ±
√

h2 − (1 − γ 2)

1 − γ
. (22)

and

c(eik) = e−ik

√√√√ (
1 − λ−1

1 eik
)(

1 − λ−1
2 eik

)
(
1 − λ−1

1 e−ik
)(

1 − λ−1
2 e−ik

) .
Note that since γ > 1 the two roots of the numerator are always real; the behaviour for R → ∞
is controlled by λ2. From equations (6.17), (6.14) and (6.18) in [16] we have, respectively

• Haldane phase h < 1(λ2 > 1)

Oz(R) � Oz +
1

8π

e−2R/ξ

R2
, ξ ≡ 1/ ln λ2.

11
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• Critical line h = 1 (λ2 = 1)

Oz(R) � Oz +
1

4π2

1

R2
.

• Néel phase h > 1 (0 < λ2 < 1)

Oz(R) � Oz +
1

8π

e−2R/ξ

R2
, ξ ≡ −1/ ln λ2.

In every case the asymptotic value Oz �= 0 is simply interpreted as a non-saturated value
of the magnetization along z in the XY model in a transverse field

Oz = −
(
1 +

〈
σ z

j

〉)2

4
, (23)

where
〈
σ z

j

〉 = G0(h, γ ) can be computed using equation (21) at R = 0.

3.2. Longitudinal spin–spin correlation function Cz(R) and pure string correlator GH (R)

The asymptotic behaviour of the Toeplitz determinant in equation (20) can be found using the
same technique as in [29], since (apart from a sign) the generating symbol c(eik) is essentially
the same used by Wu. Then we find

• Haldane phase h < 1 (λ2 > 1)

Cz(R) � (−1)R+1GH (R) = 1√
π

(
1 − λ−2

1

)1/4(
1 − λ−2

2

)−1/4(
1 − λ−1

1 λ2
)−1/2 e−R/ξ

R1/2

which corresponds to the known decay behaviour at the isotropic Heisenberg point, as
predicted by the nonlinear σ -model approach (see, for example, [30]). Moreover, in
[31, 32] it was argued that the same behaviour of the connected longitudinal correlation
function persists also in the presence of a staggered magnetic field; in this sense such a
behaviour could be considered a signature of the Haldane phase, robust against anisotropic
perturbations.

• Critical line h = 1 (λ2 = 1)

Cz(R) � (−1)R+1GH (R) = e1/421/12A−3 1

(γR)1/4

where A = 1.282 427 130 . . . denotes Glaisher’s constant [29].
• Néel phase h > 1 (0 < λ2 < 1)

Cz(R) � (−1)R+1GH (R) = (
1 − λ−2

1

)1/4(
1 − λ2

2

)1/4(
1 − λ−1

1 λ2
)−1/2

×
[

1 +
1

2π
(
λ−1

2 − λ2
)2

e−2R/ξ

R2

]
.

Apart from the nonzero asymptotic value for h > 1, that serves as an order parameter for the
Néel phase (the ordered phase T < Tc in Wu’s paper [29]), it must be noted that both the
power of R in the denominator and the exponential constant are different on the two sides of
the transition. The roots λ1,2 and the bulk correlation length ξ are the same as in subsection
3.1 (see equation (22)).

12



J. Phys. A: Math. Theor. 42 (2009) 055002 C Degli Esposti Boschi et al

3.3. Transverse string correlation function Ox(R)

• Haldane phase h < 1 (λ2 > 1). The nonzero asymptotic value Ox comes from the long-
range order limR→∞

〈
σx

0 σx
R

〉
in the XY model with spontaneous breaking of the symmetry

σx → −σx . The result can be borrowed directly from equation (4.1) of [16],

Ox(R) � − [γ 2(1 − h2)]1/4

1 + γ

[
1 +

1

2πR2

e−2R/ξ(
λ2 − λ−1

2

)2

]
, (24)

with ξ having the same meaning of subsection 3.1.
• Critical line h = 1 (λ2 = 1). There is no long-range order in

〈
σx

0 σx
R

〉
, that decays to

zero as R−1/4 as expected from the scaling dimension 1/8 of the primary operator in the
c = 1/2 CFT [12]. Using equation (4.7) in [16] we have

Ox(R) � − γ

1 + γ
e1/421/12A−3 1

(γR)1/4
. (25)

• Néel phase h > 1 (0 < λ2 < 1). Equation (4.25) in [16] is translated to

Ox(R) � − 1

2
√

π

e−R/ξ

R1/2

[(
1 − λ2

2

)−1(
1 − λ−2

1

)(
1 − λ−1

1 λ−1
2

)2
]1/4

. (26)

We should stress that the critical exponent in equation (25) differs from that in equations
(24) and (26); it is not possible to recover the decay behaviour at h = 1 from the functions
found for h > 1 or h < 1 simply by letting R/ξ → 0 in the exponentials. Qualitatively,
the reason is that the correlation functions should be described by a unique scaling function
F(r) of the variable r = R/ξ , but the asymptotic expansions in the off-critical regime and
in the critical regime are different. The former corresponds to r � 1 while the latter to
r → 0 for any large but finite value of R. A similar argument holds also for the longitudinal
spin–spin correlation function Cz(R) of the previous subsection. Although possible in
principle (see, for instance, [33] for the 2D classical Ising model), the derivation and the
usage of the whole scaling functions is beyond the scope of this paper. Finally, we note
from the equations above, as compared to those of subsection (3.2), that the correlators
Ox(R) and Cz(R) play a dual role above and below the transition line; when one order
parameter is vanishing, the other is not. Here we do not have an explicitly duality relation
between order and disorder lattice operators for the spin-1 model as in the Ising case (see,
however, [34] for the XY chain). Hence, what is a nontrivial fact is to see that also the
decay laws interchange when the transition line is crossed.

3.4. Transverse spin–spin correlation Cx(R)

From the analysis reported in the appendix, we can prove a conjecture already put forth in
[15], namely that the transverse correlation function decays always exponentially even when
one crosses the critical line. Here we can be more precise and derive also the power-law terms
in front of the exponential

Cx(R) � exp(−R/�)

Rηx
, � ≡ 2

β + β ′ , (27)

where β and β ′ in the Haldane phase, along the critical line and in the Néel phase take,
respectively, the form written in equations (A.4), (A.8), (A.5), (A.9), (A.6) and (A.10) in the
appendix. In particular we have checked that both βc and β ′

c for h = 1 and γ � 1 are nonzero.
Hence, despite the fact that the system is critical, the transverse correlation function exhibits
a finite characteristic length �. As far as the exponent ηx is concerned

13
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Table 3. Expected asymptotic behaviour of string (O) and usual (C) correlation functions in the
Haldane and Néel phases of model (2) and along the critical transition line separating them. The
fitting functions f0,1,2 are defined in equations (28)–(30). Note the interchanged role of Ox(R)

and Cz(R) above and below the transition line.

Phase C.f. Decay law

Haldane Cz f1(A2 ≡ 0)

Transition Cz f0
(
A−1

1 = 0
)

Néel Cz f2

Haldane Cx f1(A2 ≡ 0)

Transition Cx f0

Néel Cx f1(A2 ≡ 0)

Haldane Oz f2

Transition Oz f2
(
A−1

1 = 0
)

Néel Oz f2

Haldane Ox f2

Transition Ox f0
(
A−1

1 = 0
)

Néel Ox f1(A2 ≡ 0)

• Haldane phase h < 1 (λ2 > 1) and Néel phase h > 1 (λ2 < 1): ηx = 1/2;
• Critical line h = 1 (λ2 = 1): ηx = 1/4. Despite the fact that �(h = 1) < ∞,

the algebraic prefactor is the same power-law that describes critical correlations in the
quantum Ising model.

From the values of h and γ reported in the last two columns of table 2 we have computed
�[h(λ,D), γ (λ,D)]; for example when λ = 1 we find that � decreases steadily as D is
decreased towards larger negative values, passing from the Haldane to the Néel phase. This
behaviour is consistent with the numerical best-fit estimates of � made in the following section.

4. Comparison with DMRG results

The results of the previous section regarding the long-distance decay of ordinary and string
correlation functions are summarized in table 3 where

f0(R) = A0
exp(−R/A1)

R1/4
(28)

f1(R) = A2 + A0
exp(−R/A1)√

R
(29)

f2(R) = A2 + A0
exp(−2R/A1)

R2
. (30)

Within the approximation of hidden order and for large R these asymptotic laws are to be
considered exact and valid for the Haldane and Néel phases and associated transition line as
specified in table 3. It should be noted that f1(R) and f2(R) agree with the general form argued
for the d-dimensional Ising model (see, for example, [35] and references therein) although the
derivation of the latter did not include the case of string correlation functions.

The two functional forms f1,2 now can be used to extract, for example, the asymptotic
value of string order correlation functions computed numerically; in this sense A0, A1 and

14
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A2 may be regarded as free fitting parameters. The goodness of the best-fit procedure can be
assessed by computing the reduced χ2:

χ̃2 ≡
∑

squares of differences

# of data points − # of fit parameters − 1
.

Clearly one could use many other different functions to extrapolate the correlators to
R → ∞. However, as recalled in the introduction, the literature contains very few,
empirical, information about the asymptotic approach to the limit values of the string
correlation functions. Our study was motivated by this fact and so here we perform a
comparison between f0, f1 and f2 by examining their capability to fit the spin–spin and string
correlations evaluated numerically through the DMRG. Actually, following the idea of [30],
in order to take into account the PBC we employ the left–right symmetrized expressions of
equations (28)–(30)

F�(R) ≡ f�(R) + f�(L − R)

2
, � = 0, 1, 2, (31)

at least for the correlation functions in the z-channel. As regards Ox , while translational
invariance implies that it depends on the difference between the sites at the ends of the string,
it is not always guaranteed that it depends only on the distance on the ring. In other terms the
expectation value〈

Sx
i eiπ

∑j−1
k=i+1 Sx

k Sx
j

〉
may differ from the same expression with i and j interchanged. In fact, using the properties of
the exponentials of spin-1 operators, exp

(
iπSx

i

) = exp
(−iπSx

i

)
and Sx

i exp
(
iπSx

i

) = −Sx
i ,

it can be shown that the expression above can be rewritten as〈
Sx

j eiπ
∑i−1

k=j+1 Sx
k Sx

i eiπSx
tot
〉

where Sx
tot = ∑L

i=1 Sx
i . The point is that in general the GS of an anisotropic spin chain is not

invariant under the action of exp
(
iπSx

tot

)
and so a direct inspection is required case by case in

order to decide if a symmetrized fitting function has to be used or not.
The asymptotic limits (i.e. the values of A2) resulting from of a series of best-fits made on

DMRG data obtained by fixing λ = 1 and letting D to vary across the Haldane–Néel transition
from −0.125 to −0.875 are plotted in figure 2. It is seen that the nonvanishing values of Ox

and Mz characterize, respectively, the Haldane and the Néel phase. It is reasonable to expect
that the location of the critical point as the value of D at which the two order parameters vanish
leads to two slightly different estimates. However, with more accurate methods the critical
point was previously found to be Dc = −0.315 [9, 17].

In the simulations we have fixed the total length of the chain to be L = 100 sites and
computed the GS properties by retaining from 243 to 324 DMRG states in the sector with
Sz

tot = 0, which is the only good quantum number that we could use. All the functional forms
derived above are asymptotic so we cannot expect them to be reliable for very short distances.
Therefore, we have conventionally excluded the data with R � 5 from the fitted points. In
the Néel phase the GS tends to become doubly degenerate in the limit L → ∞; in order
to take into account this difficulty we have built the reduced density matrix by targeting the
two low-lying states rather than just the GS. Finally we have performed three finite-system
sweeps to achieve a better accuracy. In the cases we have considered, the transverse string
correlation Ox(R) turned out to be symmetric with respect to the middle of the chain except
for D = −0.75 and D = −0.875. For this reason we have repeated the fit using directly the
functions of equations (28), (29) and (30) without symmetrization selecting only the points in
the first-half of the chain. The asymptotic values are essentially unaffected, with the exception
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Figure 2. Asymptotic values (order parameters) attained by Cz (dots), Oz (up triangles) and Ox

(down triangles). The limits to R → ∞ correspond to the values of the best-fit parameters A2 for
the fitting function that, case by case, gives the smallest value of χ̃2. The empty triangles result
from fitting the transverse string correlation functions on half-chain (see the text for explanation).

of those referring to the critical point. In general when the results of the fit are such that
A1 � L (typically close to criticality) we conclude that the exponential tail of the fitting
function is essentially saturated to unity and an algebraic fit would produce the same result.

As far as the best-fitting functions for Cz(R) and Ox(R) are concerned, the passage from
the type f1 to the type f2 going through f0 at the critical point, as in table 3, actually takes
place gradually in the interval D ∈ (−0.345,−0.315), the worst values of χ̃2 being of order
10−5. The best choice to fit the transverse spin–spin correlation function Cx(R), instead,
follows the prediction of table 3 (F1 except at the critical line, where it becomes F0) with a
deviation χ̃2 < 10−8. Finally, the longitudinal string correlator Oz(R) is very well fitted by
F2, in agreement with table 3, with χ̃2 ∼ 10−9 or better.

It is also important to check quantitatively the goodness of the Hartree–Fock
approximation. The decoupling parameters in the fermionic version are n0 = 〈nj=0〉, A =
〈c†1c0〉 and B = 〈c1c0〉 where we have selected a reference site ‘0’ invoking translational
invariance. In the original spin-1 formalism it can be checked directly that

n0 = 〈(
Sz

0

)2〉
, A = 1

2

〈
Sz

1

(
S+

0 S−
1 + S+

1 S−
0

)
Sz

0

〉
. (32)

The operator c1c0 destroys a couple of fermions in adjacent sites; in the spin language they
could be ↑↓ or ↓↑ depending on the surrounding sites in order to respect the AFM order. Let
us express the GS in the form |GS〉 = α|⇑〉 + β|⇓〉, where |⇑〉 denotes a linear combination
of states in which the first nonzero spin along the z direction is directed upward and | ⇓〉 the
same state with all the spin reversed. Only one of the terms in

(
S+

0 S−
1 + S+

1 S−
0

)
will act on |⇑〉

respecting the AFM order and the other term will thereby act on |⇓〉. When the scalar product
with 〈GS| is taken, the states from | ⇑〉 will not mix with those from | ⇓〉. Therefore we try
with the expression

B = − 1
2

〈(
S−

0 S+
1 + S+

0 S−
1

)
Sz

0S
z
1

〉
. (33)
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Table 4. DMRG (L = 100) versus self-consistent (s-c) estimates of the three decoupling
parameters n0, A and B of equations (32) and (33). It must be kept in mind that the continuum
versions of the self-consistent equations neglect some O(L−1) terms coming from isolated
contributions at wavenumber 0 or π .

λ D n0,DMRG ADMRG BDMRG n0,s−c As−c Bs−c

1 0 0.667 −0.166 −0.300 80 ± 0.000 05 0.709 −0.158 −0.253
1 −0.125 0.702 −0.151 −0.289 08 ± 0.000 05 0.745 −0.137 −0.246
1 −10 0.996 −0.000 324 −0.0442 0.996 −0.000 317 −0.0433
5 −0.125 0.991 −0.000 860 −0.0654 0.991 −0.000 853 −0.0649

In table 4, we report the values of the decoupling parameters for a set of points in the
Haldane and Néel phases, comparing the DMRG values with the numerical solution of the self-
consistent equations using 100 iterations from different choices of initial conditions. Having
the DMRG estimates for n0 and A we may also produce a ‘hybrid’ estimate of the critical point
by setting h = 1 in equation (6) and then solving for D̃c(λ) = 2[λ(n0,DMRG − ADMRG) − 1].
With λ = 1 we find, for example, D̃c = −0.254, that compares slightly better than the fully
self-consistent value (Dc = −0.214) to the accepted numerical one Dc

∼= − 0.315.
Apart from the value n0, which quantifies the number of spins with nonzero projection

along z, we expect that the goodness of the mapping used in this work is higher when the hidden
order is larger. Therefore, as a final check, we have repeated the passages of section 2 (see
[36] for details) including also a biquadratic term 1

3

∑
i (

�Si · �Si+1)
2 in the spin-1 Hamiltonian

(2). For λ = 1 and D = 0 the ground state of the model can be found exactly [1, 11] using the
valence-bond picture: each spin-1 is viewed as the triplet sector of a pair of spin-1/2 particles
and the ground state is constructed by creating a sequence of singlets between adjacent sites.
In this case the string correlation functions can be computed exactly and it turns out that
Ox,z(R) = −4/9 independent of R. At the isotropic point with biquadratic term the self-
consistent equations are solved by n0 = 2/3, A = B = −2/9 and the effective parameters of
the XY model become h = 3/5 and γ = 4/5. From equation (22) we find λ1 = λ2 = 3 so that
in equation (23) we have just

〈
σ z

j

〉 = 1/3 and Oz = −4/9. Interestingly enough, even if the
XY model does not have an explicit rotational symmetry as the original spin-1 Hamiltonian,
by inserting these values of h and γ into the constant part of equation (24) we find again
Ox = −4/9. This accordance can be taken as a positive check of our approach.

5. Conclusions

In this paper we have reconsidered and extended the approach of [15] to the GS properties of
spin-1 anisotropic quantum chains. We have included a single-ion term in the Hamiltonian
and, moreover, we have analysed explicitly how the spin-1 correlation functions are written
in the spinless fermions language and then in the framework of the XY model in a transverse
field for effective spin-1/2 degrees of freedom. In particular, we have focused on the decay
laws of the string correlators towards their asymptotic values which apparently were missing
in the literature.

The decay laws of string and spin–spin correlation functions (in the longitudinal channel)
are all related to the generating function c(eik) of equation (21) and the determinants of the
Toeplitz matrices derived from it. The asymptotic behaviour of the transverse correlation
function Cx(R), instead, originates from a product of two Toeplitz determinants (see the
appendix, in particular equation (A.2)). The leading terms in the regime R � 1 for the
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various correlators are discussed in section 3 and summarized in table 3. In brief the most
interesting points unveiled by the approach used here are

• the nonvanishing string-order parameters of the spin-1 model (2) are simply interpreted
as the magnetization along x and z in the XY chain with the transverse field (equations
(23) and (24)).

• There exists dual behaviour of Ox(R) and Cz(R) above and below the transition, both for
the asymptotic order parameters and for the decay functional forms.

• The explicit calculation of Cx(R) allows us to prove an unusual feature in statistical
mechanics, already conjectured by Gómez–Santos [15]: the spin–spin transverse
correlation function exhibits always a finite characteristic length � (equation (27)) even
when the system becomes critical.

The analytical results are supported by comparison with a numerical (DMRG) study of the
model, especially for the correlations Cx and Oz. A more detailed comparison between the
analytical and the numerical estimates should take into account: (i) finite-size effects due to
a finite total length L while in section 2 we passed readily to the thermodynamic limit; (ii)
corrections for finite distance R beyond the dominant ones. Although in principle they can be
computed systematically, in this paper we have limited ourselves to the leading terms in order
to derive analytical expressions with the smallest possible number of fitting parameters.
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Appendix A. Toeplitz formulation of Cx(R)

The fermionic version of equation (13) reads

1

2

〈
S+

j S−
j+R + S−

j S+
j+R

〉 =
〈
Aj

∏
k<j

(1 − 2nk)

j+R−1∏
k=j+1

(1 − nk)
∏

k<j+R

(1 − 2nk)Aj+R

〉

=
〈
Bj

(
j+R−1∏
k=j+1

ckc
†
k

)
Aj+R

〉
=

〈
c
†
j

(
j+R−1∏
k=j+1

ckc
†
k

)
c
†
j+R

〉

+

〈
c
†
j

(
j+R−1∏
k=j+1

ckc
†
k

)
cj+R

〉
−

〈
cj

(
j+R−1∏
k=j+1

ckc
†
k

)
c
†
j+R

〉
−

〈
cj

(
j+R−1∏
k=j+1

ckc
†
k

)
cj+R

〉
.

By observing that〈
c
†
j

(
j+R−1∏
k=j+1

ckc
†
k

)
c
†
j+R

〉
=

〈(
c
†
j

(
j+R−1∏
k=j+1

ckc
†
k

)
c
†
j+R

〉)†

= −
〈
cj

(
j+R−1∏
k=j+1

ckc
†
k

)
cj+R

〉

〈
c
†
j

(
j+R−1∏
k=j+1

ckc
†
k

)
cj+R

〉
=

〈(
c
†
j

(
j+R−1∏
k=j+1

ckc
†
k

)
cj+R

)〉†

= −
〈
cj

(
j+R−1∏
k=j+1

ckc
†
k

)
c
†
j+R

〉

we can write Cx(R) = (−1)R
〈
S+

j S−
j+R + S−

j S+
j+R

〉/
4 (using translational and U(1) rotational

invariance about z) as

Cx(R) = −
√

det M1 −
√

det M2 (A.1)
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where the two terms come, respectively, from the Pfaffians

Pf|iF1 iF2 · · · iFR−2 iFR−1 −H−1 −H−2 · · · −H−R+1 −H−R

iF1 · · · iFR−3 iFR−2 −H0 −H−1 · · · −H−R+2 −H−R+1

. . .
...

...
...

...
...

...
...

iF1 iF2 −HR−4 −HR−5 · · · −H−2 −H−3

iF1 −HR−3 −HR−4 · · · −H−1 −H−2

−HR−2 −HR−3 · · · −H0 −H−1

−iF1 · · · −iFR−2 −iFR−1

. . .
...

...

−iF1 −iF2

−iF1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

Pf|iF1 iF2 · · · iFR−2 iFR−1 −H−1 −H−2 · · · −H−R+1 iFR

iF1 · · · iFR−3 iFR−2 −H0 −H−1 · · · −H−R+2 iFR−1

. . .
...

...
...

...
...

...
...

iF1 iF2 −HR−4 −HR−5 · · · −H−2 iF3

iF1 −HR−3 −HR−4 · · · −H−1 iF2

−HR−2 −HR−3 · · · −H0 iF1

−iF1 · · · −iFR−2 HR−1

. . .
...

...

−iF1 H2

H1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
with

Fl−j ≡ i〈cj cl〉 = −i〈c†j c†l 〉 = 1

2π

∫ 2π

0
dk e−ik(l−j)f (eik)

Hl−j ≡ 〈cj c
†
l 〉 = 1

2π

∫ 2π

0
dk e−ik(l−j)h(eik) e−ik

f (eik) ≡ γ sin k

2
√

(cos k − h)2 + γ 2 sin2 k
, h(eik) ≡ eik

2

(
1 +

cos k − h√
(cos k − h)2 + γ 2 sin2 k

)
.

It is useful to note that Fl−j = −Fj−l and Hl−j = Hj−l . According to usual conventions, the
Toeplitz matrix

M1 =
(−iF −H

HT +iF

)
= M1[φ], M2 = M1 + M0

in equation (A.1) is generated by matrix-valued symbol (analytically continued to the unit
circle)

φ(z) =
(−if (z) −h(z)

h(z−1) if (z−1)

)
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while M2 = M1 − M0 with

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 . . . 0 −H−R − iFR

...
...

...
...

...
...

...

0 . . . 0 0 . . . 0 −H−1 − iF1

0 · · · 0 0 . . . 0 −HR−1 − iFR−1

...
...

...
...

...
...

...

0 . . . 0 0 . . . 0 −H1 − iF1

H−R + iFR · · · H−1 + iF1 HR−1 + iFR−1 . . . H−1 + iF1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, since the trace norm of M0 is vanishing, when R → ∞ we get det M1 = det M2 so
that so that Cx(R) � −2

√
det M1. In order to compute the determinant, we need to check the

possible zeroes of

det φ(z) = 1

2

(
1 + sign(z)

z2 + 1 − 2hz√
(z2 + 1 − 2hz)2 − γ 2(z2 − 1)2

)
;

for instance, when z = ±1, det φ(±1) = 1
2 (1 + sign(±1)sign(1 ∓ h)) so that for h < 1 the

symbol is singular at z = −1, while for h > 1 it is singular at z = +1. Unfortunately,
as discussed also in [27], known results for the matrix-valued symbol do not cover the
case of singular symbols with vanishing determinant. Hence, the strategy is to factorize
the determinant of M1 as a product of determinants of matrices generated by scalar-valued
symbols. Fortunately, in this case this task is accomplished by transforming M1 through the
matrix

U =
(

1 iF−1H

0 1

)
so that

UT M1 U =
(−i F 0

0 i F + i HT F−1 H

)
. (A.2)

Now, we first use a theorem by Widom and Silbermann (see, for instance, [37, 38]) according
to which F−1 is a Toeplitz matrix generated by f −1 (in the present case this result holds for
even R) and then express the product HT F−1 H as another Toeplitz matrix generated by the
symbol ih(z−1)f −1(z)h(z). The last identification can be done by using repeatedly a theorem
by Brown and Halmos [39]:

T (ϕ)T (ψ) is a Toeplitz operator iff either ϕ∗(z) or ψ(z) are analytic functions; if
the latter condition is satisfied then T (ϕ)T (ψ) = T (ϕψ)

where T (ϕ) denotes the Toeplitz matrix generated by the function ϕ.
Let us start by computing det(−i F):

• Haldane phase h < 1 (λ2 > 1). From the analytic continuation to the unit circle

f (z) = −i
γ

2 (1 − γ )
sign(z)

(1 − z)(1 + z)√
(z − λ1)(z − λ2)(1 − zλ1)(1 − zλ2)

(A.3)

we see that f vanishes at z = ±1 and is singular at z = λ−1
1,2. This case is covered by the

Fisher–Hartwig conjecture (see [23, 27, 37, 38]) and the asymptotic behaviour turns out
to be det(−i F) ∼ EHR−1 exp(−βHR) with

βH = 7

4
ln[|λ1|λ2] − ln

γ

2(γ − 1)
. (A.4)
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Table A1. Values of zr , αr , βr for the function f (z) (equation (A.3)) in the Haldane and Néel
phases.

zr αr βr

−1 1/2 3/4
+1 1/2 3/4

λ−1
1 −1/4 −1/2

λ−1
2 −1/4 −1/2

In general the exponent of the power-law prefactor is given by
∑

r α2
r − β2

r where the
index r runs over all zero and singular points zr of f (z) while the numbers αr and βr are
defined through the factorization of the function in the following form:

−if (z) = τ(z)
∏

r

(
1 − z

zr

)αr +βr
(

1 − zr

z

)αr−βr

,

the residual function τ(z) satisfying the conditions of Szegö’s theorem. In this specific
case, the 1/R prefactor is due to the combination of the exponents reported in table A1.
Finally, the constant prefactors E can also be written down explicitly in the framework of
the Fisher–Hartwig conjecture, although the result will not be given here for the sake of
brevity and because they will be treated as free fitting parameters.

• Critical line h = 1 (λ2 = 1). There is only one zero at z = −1 and one singularity at
z = 1/λ1. The exponents associated with these two points are the same as in the Haldane
phase; in this case the power of R receives contributions only from these two points and
becomes [(1/2)2 − (3/4)2 + (−1/4)2 − (−1/2)2] = −1/2, instead of −1. However, the
characteristic inverse scale in the exponential is nonvanishing even at the critical point

βc = 7

4
ln |λ1| − ln

γ

2(γ − 1)
. (A.5)

• Néel phase h > 1 (λ2 < 1). The zeroes remain at z = ±1 while the singularities now
are at z = λ−1

1 and z = λ2. Therefore, we proceed along the same line followed for the
Haldane phase, just by replacing λ2 ↔ 1/λ2. In particular, we find the same numbers
αr and βr as for the case h < 1 and thus the asymptotic behaviour remains of the form
det(−i F) ∼ ENR−1 exp(−βNR) with

βN = 7

4
ln

|λ1|
λ2

− ln
γ

2(γ − 1)
. (A.6)

Let us now pass to det G, with G = iF + iHTF−1H, generated by the symbol

g(z) = ih(z−1)f −1(z)h(z) + if (z)

= − 1

γ

1

z2 − 1
[z2 − 2hz + 1 + z

√
(z + z−1 − 2h)2 − γ 2(z − z−1)2]

(analytically continued to the unit circle).

• Haldane phase h < 1 (λ2 > 1). The Fisher–Hartwig conjecture now can be applied,
thanks to the following factorization:

g(z) = τ(z)(1 − z)α1+β1(1 − z−1)α1−β1(1 + z)α2+β2(1 + z−1)α2−β2 (A.7)

with α1,2 and β1,2 as in table A2 and with

τ(z) = 1

γ

1

(1 + z)2
[z2 − 2hz + 1 + z

√
(z + z−1 − 2h)2 − γ 2(z − z−1)2]
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Table A2. Values of zr , αr , βr for the function g(z) in the Haldane and Néel phases.

zr αr (H) βr (H) αr (N) βr (N)

−1 1/2 1/2 1/2 1/2
+1 −1/2 −1/2 1/2 1/2

satisfying Szegö’s theorem. Consequently, the asymptotic behaviour is purely
exponential: det G ∼ E′

H exp(−β ′
HR) where

β ′
H = − 1

2π

∫ 2π

0
dk ln | cos k − h +

√
(cos k − h)2 + (γ sin k)2| + ln

γ

2
. (A.8)

• Critical line h = 1 (λ2 = 1). There are no singularities and a simple zero at z = −1,
with exponents α and β as in the first row of table A2. Therefore, the net power of R in
the algebraic prefactor vanishes and the decay is purely exponential with

β ′
c = − 1

2π

∫ 2π

0
dk ln | cos k − 1 +

√
(cos k − 1)2 + (γ sin k)2| + ln

γ

2
. (A.9)

As a function of γ, β ′
c is decreasing for γ > 1 but does not vanish.

• Néel phase h > 1 (λ2 < 1). With respect to the Haldane phase, the function τ(z) changes
to

τ(z) = 1

γ

1

(1 + z)2(1 − z)2
[z2 − 2hz + 1 + z

√
(z + z−1 − 2h)2 − γ 2(z − z−1)2]

while the exponents α1,2 and β1,2 are reported in the fourth and fifth column of table
A2. Again, there is no algebraic prefactor and the constant of the exponential decay,
det G ∼ E′

N exp(−β ′
NR), reads

β ′
N = − 1

2π

∫ 2π

0
dk ln | cos k − h +

√
(cos k − h)2 + (γ sin k)2| + ln

γ

2
= β ′

H(γ, h).

(A.10)
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